Precision and Complexity of XQuery Type Inference

Dario Colazzo*
LRI - Université Paris Sud/INRIA

Carlo Sartiani

Dipartimento di Matematica e Informatica - Universita della Basilicata

1 Introduction

XQuery [6] is a functional and Turing-complete
XML data manipulation language that allows
the programmer to navigate through an XML
document (or a set of documents), to select rele-
vant fragments of the document, and to combine
them so to return new documents. Defined by
the W3C Consortium, XQuery is also statically
and strongly typed.

In XQuery, types of input data and functions
are defined in terms of regular expression types,
but it is quite easy to write queries that gen-
erate non-regular languages. As a consequence,
any type system for XQuery has to rely on a type
inference process that approximates the (possi-
bly non-regular) output type of a query with a
regular type. This approximation process, while
mandatory and unavoidable, may significantly
decrease the precision of the inferred types. This
is the case of the W3C proposed type system,
which relies on some over-approximating rules
for expressions widely used in practice, like for-
iteration, for instance. Another source of un-
desired over-approximation is given by rules to
type horizontal and upward XPath axes, for
which the type any is always inferred.

An alternative and more precise approach for
typing XQuery has been proposed in [4] and
used as a basis for other proposals [2, 1, 3].
This type system has more precise type infer-
ence, at the price of an increased computational
complexity.

Though these approaches are well-known by
the database and programming language com-
munities, a formal, rigorous, and complete anal-
ysis showing in which cases the two propos-
als differ in terms of precision and complexity
for type inference, is still missing. Such for-
mal analysis, guided by existing classifications of
schemas used in practice, could have a practical

*This work has been partially funded by Agence Na-
tionale de la Recherche, decision ANR-08-DEFIS-004.

relevance as well, since it would provide impor-
tant information to implementation designers.

In this paper we start this missing compara-
tive analysis. Besides providing a clean and sim-
ple formalization of main typing mechanisms, we
will formally study the complexity of the two
approaches, show in which cases the W3C ex-
cessively over-approximates inferred types, and
show that in many of these cases the type system
proposed in [4] infers quite precise types still at
a reasonable time cost.

2 Type Language

Our type language, which is an abstract model
of the type language of XQuery, describes forests
of unranked, node-labeled trees. Forests and
trees obey the data model shown in following
grammar, where () is the empty forest, b iden-
tifies atomic values, [[f] represents an element
labeled by [with the nodes in f as its children,
and f, f denotes the ordered concatenation of
forests.

foo= 0 1o [U ff

As usual, the concatenation operator is as-
sociative and () is its neutral element: (), f =
£.0=1

Our type language is shown below, where ()
is the type for the empty sequence value, B de-
notes the type for base values, types T, U and
T | U are, respectively, ordered product and
union types, and, finally, T, T+, and 17 are
the usual repetition and optional types. Verti-
cal recursion is supported through type environ-
ments and type variables.

Q = 015 11Q | QQ
| T child:: NodeTest
| Tdos :: NodeTest
| for T in Q return Q
| let z := Q return Q
| for T in) where P return)
| let z ::= @ where P return)

NodeTest = 1 |node() | text()
P = true |xd x|empty(y)|P or P
|not P | (P)
X = T | x
0 u= =<

Figure 1: The grammar of miniXQuery.

As usual, we restrict to [[]-guarded type en-
vironments, which are environments where only
[[]-guarded vertical recursion is allowed.

The lack of horizontal recursion is counterbal-
anced by the presence of the Kleene star oper-
ator x. This restriction is canonical, and makes
the type language as expressive as regular tree
languages, hence expressive enough to capture
the main type mechanisms of DTD and XML
Schema.

As usual the semantics of type is defined as
the minimal function that satisfies the following
set of monotone equations:

[0]e = {0}

[Bl & 2 {b | bis a base value}
[T e = {ilf] | felTle}

[Ty | Dol = [Ti]eU[Te]s
[Tl = {fi.f2 | fielTi]s}
[X]e 2 [X(B)e

[T7?] & = [T 0le

[T+] e = 715

[T+]e = 775

3 miniXQuery

miniXQuery is a minimal language modeling
the FLWR core of XQuery. miniXQuery con-
tains for, let, where, and return clauses, and
allows the user to specify both the child and
the descendants-or-self axes. The predicate lan-
guage comprises variable comparisons only. The
syntax of miniXQuery is shown in Figure 1. The
semantics of the language and the required aux-
iliary functions are shown in Table 3.1 and Fig-
ure 2.

There, p is a substitution assigning a for-
est to each free variable in the query; we

dos(b) £y childr(b) 2 ()

dos(1[f]) 21[f), dos(f) childr([f]) = f

dos(()) =) dos(f,f') = dos(f), dos(f")
bl £ 1[f] 1 2101

()l £ (f)l Efal el
m[f]: 1 20 m#l funode() 2Ff

b :: text() £y O = text() 2 ()

mif] = text() £ ()

(f, f) s teat() £ f = tewt(), f = tewt()

true(p) true

(x d x)(p 3t € trees(p(x)),t" € trees(p(x’)). t 6 t/

)
(P or P)(p)
empty((x))(p)
(not P)(p)

Figure 2: Auxiliary functions and predicate
evaluation.

P(p) or P(p)
if p(x) = () then true else false
not P(p)

1 | L L | L]

make the assumption that each p always as-
sociates a tree t to a for-variable T it defines;
also, dos is a shortcut for descendant-or-self.
The semantics of for queries is defined via
the operator [, .ees(s) A(t), yielding the for-

est A(ty),...,A(t,), when f = ty,...,t,, and
() when f = ().

4 The W3C Type System

4.1 Complexity

The first result we want to discuss here is stated
in the following theorem.

Theorem 4.1 Given an input type T and a
miniXQuery query @, E;T' +,, Q : U can be
computed, according to the W3C type system, in
polynomial time and space.

For reasons of space, we cannot prove here this
result. However, we can illustrate it by looking
at some of the most crucial type rules of the
W3C type system.

Consider the rule (TYPEFOR) shown below.
(TYPEFOR)

ETkH,Q:T
E;T, T: Primeg(Th) bm Q2 : To
E;T'k,, for T in Q1 return Q2 : Ts . Quantg(1y)

The rule describes the behaviour of the type
inference system when a for-iteration is vis-
ited. The output type is computed as follows.
The rule first computes the inferred type for
()1; from this type a prime type is extracted
by the function Primeg(Ti). Primeg(T}) re-
turns the union of the uppermost base or tree

Table 3.1. miniXQuery semantics
I

[01, =
[01, £ ()
[Z child :: NodeTest], £ childr([Z],) :: NodeTest

[Z dos :: NodeTest], £ dos([z],) :: NodeTest

[let z == @ return @3], = [QQHP’HQlﬂp

[for T in @ return Qs], £ Htetrees([[Ql]]p)[[QQHP,M

[[x]]p

[[QlaQ2ﬂp = [[Ql]]pa [[QQHP

[let z == @ where P return Qs], £if P(p,z—[Q1],) then [Q2], »q.], else ()
[for T in Q, where P return Q,], = [Lictrees(poip,) (f Pp; Tr=1) then [Q2], 7 else ()

types inside T" and it can be computed in linear
space and time. Primeg(T}) is, then, bound to
T in the variable environment and used to in-
fer the output type T, which is further refined
by the application of a quantifier in {7, +,*}
(T2 . QucmtE(Tl))

It should be observed that (), is visited only
once by the inference rule, hence the complexity
is not affected by the size of the inferred type
for Ql'

Consider now the rule (TYPEDOS) shown be-
low.

(TYPECHILDNODETEST)

z:Tel' N (T=m[I'|VT = B)
E -, content(T) = nogetest U
E;T'F,, @ child :: NodeTest: U

This rule infers an output type for az child :
NodeTest filter by extracting the children types
of T" and filtering them according to NodeTest.

Consider now the following query:

for T in I[b], m[b], n[b]

(TYypPEDOS) return for § in T child :: node()
T:TeD A (T=myTl] | ma[T4]| ... | malT]VT = B) return T,y
E;T F,, T child : Ty
E;D, T : Primeg (1) b T child : Ty When invoked on this query, the type in-
EiL@: Primep(T2) b T child : T ference system first infers a type for 1[b],
E;F,f : Primeg(Ty,) b T child : Tyyq m[b], nlb]. Thls type (Z[B]> m[B]7 n[BD 18
E:T b, Primep(Thsy) <: Primeg(Th) | ... | Primep(Tihen passed to Primeg(-), whose result is (I[B] |
U’ = (Primeg(T) | Primeg(T1) | ... | Primeg(T,))x m[B] | n[B]).
Etm U =Nogerest The inference system, then, infers a type

E;T'F,, Tdos: NodeTest:U

This rule applies to dos selectors and infers
a type for a T dos :: NodeTest filter. The rule
essentially traverses the parse tree of T and, at
each step, collects the prime types it encoun-
ters. The premise E;T" &, Primeg(T,11) <
Primeg(Th) | ... | Primeg(T,) is just a formal
way to express the termination of the search in
the parse tree and it does not involve any sub-
typing operation. The rule returns a type con-
sisting of the star-guarded union of the types
collected during the exploration.

It is quite easy to see that no type is vis-
ited twice and that the repeated application of
Primeg(-) can be computed in polynomial time
by using some form of memoization.

4.2 Precision

To illustrate the precision issues that affects the
W3C type system, we focus our attention on the
following type rule.

for the inner query. In this case, the rule
(TYPECHILDNODETEST) is applied and the re-
sult is just B | B | B.

Hence, the inferred output type for the query
is: ((U[B] | m{B] | n[B)), (B))+.

This type is a gross over-approximation of the
actual type of the output, which is the following;:
[[B], B,m[B], B,n[B], B. This approximation is
justified by the need to confine space and time
complexity in the polynomial realm.

In the following section we will see how preci-
sion of type inference can be improved.

5 A More precise type system

The more precise type system proposed in [4]

distinguishes for its rule to type for-iterations:
(TypeEFOR)

E;F"QllTl E;l—‘l—finTl—>Q2:T2
E;TF for T in @ return Qs : 15

As in the W3C case, the rule first computes
the inferred type for)q; this type is then iter-
ated on by a type analysis allowing the system
to prove the premise F; 'z in 77 — Qs : Tb.
This analysis is performed according to several
rules; for reasons of space, we only show below
the most significant ones.

(TYPEINSEQ)

El'FzinT, - Q:U;, i=1,2
ETFzin Ty, Ty — Q:U17U2

(TYPEINSTAR)

ElTFzinT — Q:U
ETHFZinTx — Q:Ux

(TypPEINEL)

ETHQ:U
E;T+Z inl[T] — Q:I[U]

The rules for auxiliary expressions
TinTy — @y are purely structural on
Ty, and allow for a very precise type analysis,
since possible over-approximations introduced
by Quantg(T}) are avoided. For example, when
T} is a product T",T”, we have that, according
to the W3C specification, Quantg(Ty) is x*
(or + in some cases). As a consequence, a
x type is always inferred for the whole for
query. Instead, the above rule TYPEINSEQ
infers a more precise sequence type 17”5, 7"5. In
general a *-type is inferred much less frequently,
typically only when 77 contains a top level x
type. As a consequence, we have a more precise
type inference.

On the other hand, for nested for-expressions
this rule may lead to O(n*) time complexity,
where £ is the number of nested for expressions,
and n is the maximal size of the type T} inferred
for the left hand side query of for-expressions.
In practical cases, both k and n are rather small,
hence the type inference time remains reason-
able. This is testified by some tests that we
made on real case and quite complex queries [5].

Concerning the typing of descendant-or-self
axis, the type system proposed in [4] essentially
adopts the same approach as the one proposed
by the W3C. However, for non-recursive types,
we can do better, as shown in [5]. Given a non-
recursive type 7' (w.l.o.g. we can assume 7' not
containing variables), we can define type infer-
ence for the descendant-or-self axis as follows:

Definition 5.1

dos(Bg i B
dos([T)) = [T}, dos(T)
dos(T?) = dos(T)?
dos(T+) = dos(T)x
dos(T+) = dos(T)+
dos(T,U) = dos(T), dos(U)
dos(T |U) = dos(T) | dos(U)

It is straightforward to prove that for any non-
recursive type 71"

dos(T) =U = Vfe[T]. dos(f) € [U]

As it can be seen, the inference of * types is
reduced as much as possible, and this leads to a
better precision wrt to the W3C approach.

6 Conclusions

This work is a first step towards a compara-
tive analysis of the two current major proposals
for XQuery type inference. In future work we
aim at formally characterizing classes of queries
and schemas for which the two systems differs
in terms of precision. At the same time we will
provide classes for which the two systems ensure
the same degree of precision.

References

[1] V. Benzaken, G. Castagna, D. Colazzo, and
K. Nguyen. Type-based XML projection. In VLDB,
2006.

[2] J. Cheney. Flux: functional updates for XML. In
ICFP, pages 3—-14, 2008.

[3] J. Cheney. Regular expression subtyping for XML
query and update languages. In ESOP, 2008.

[4] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani.
Types for Path Correctness of XML Queries. In
ICFP, 2004.

[5] D. Colazzo and C. Sartiani. Detection of corrupted
schema mappings in xml data integration systems.
ACM Trans. Internet Techn., 9(4), 2009.

[6] D. Draper, P. Fankhauser, M. Fernandez, A. Mal-
hotra, K. Rose, M. Rys, J. Siméon, and P. Wadler.
XQuery 1.0 and XPath 2.0 Formal Semantics. Tech-
nical report, World Wide Web Consortium, Jan.
2007. W3C Recommendation.

